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The gravitationally induced electric field in a metal is calculated through the electron-
phonon interaction. The field is of magnitude ~ 10~ V/m and is directed upward, in agree-

ment with the results of Dessler et al.

The electric field also exists inside superconducting

materials, since once the field is decoupled, the electron-phonon interaction is essentially
unchanged. This implies, of course, that other electron-phonon effects (e.g., resistivity)
are unaffected by either the gravitational field or the induced electric field.

I. INTRODUCTION

Recently, there has been interest in an electric
field in metals induced by a gravitational field.
This interest divides between the related problems
of a gravitationally induced electric field inside a
metal and an induced field outside the surface of
a metal. The situation is complicated, however,
by the fact that the internal electric field is easier
to calculate than the external field, which depends
on the behavior of the surface dipole moment. On
the other hand, measurement of the externalfield,
although difficult, is easier than measurement of
the internal field which is not readily accessible.
This work is a calculation of the internal gravita-
tionally induced electric field.

Attempts have been made to calculate the field
outside a metal'™ and a inside metal.** Measure-
ments of the field outside a metal have been at-
tempted.5=" Schiff and Barnhill! obtained mg/e
~10"!° V/m directed downward for the field outside
the metal, which is just the field required toscreen
out the gravitational force. In their analysis, how-

ever, they neglected the gravitational compression
of the lattice. Dessler, Michel, Rorschach, and
Trammel? recalculated the electric field including
the elastic compression of the solid under its own
weight, and related the change in density of the
electron gas to the resulting density gradient of
the ions. By requiring that the electrochemical
potential of the electrons be constant, theyderived
the internal electric field necessary to balance the
pressure gradient due to the inhomogeneous elec-
tron density. This is of strength ~107® V/m and
oppositely directed to the Schiff-Barnhill result.
For the field outside the metal they obtained a
similar result. Herring® considered the gravita-
tionally induced electric field outside a body by
carefully treating the surface stresses. He con-
cluded that the larger Dessler et al. (DMRT) field
exists outside a metal.

Still another, even simpler method, using the
Fermi-Thomas model, has been suggested by
Peshkin, ® and leads to the DMRT field inside a
metal.

In this analysis, a different method is used to
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calculate the gravitationally induced electricfield.
The Hamiltonian for the solid is written down in
full, and the effect of the gravitational compres-
sion of the lattice is taken into account throughthe
electron-phonon interaction. The Hamiltonian can
be divided into two parts; one produces the electric
field of interest here, and the other is an inter-
action of the electrons with the phonons of the grav-
itationally compressed lattice. This treatment
is directly applicable to a superconductor, and
after accounting for the gravitationally induced
electric field, an electron-phonon interaction re-
mains which is virtually unchanged from that con-
sidered in the usual treatment of superconductivity
without gravitation. This interaction then produces
the superconducting state exactly as if there were
no gravitational field or induced electric field.
The method thus separates the effects of a gravi-
tational field from other electron-phonon effects
in an explicit fashion. In particular, the analysis
_implies that the internal electric field also exists
inside superconducting materials. Here too, of
course, there is no net force on the electrons.
The results of this calculation agree with those
of DMRT? for the internal field.

II. LATTICE HAMILTONIAN

The normal-mode functions for the solid are
assumed to be plane waves in the horizontal di-
rections (x-y) and a sine wave in the vertical (z)
direction, corresponding to the vibrations of a
body fixed in place at the bottom and free at all
other surfaces. These asymmetric boundary con-
ditions are needed if the body is not to fall freely
in a gravitational field. Instead of simple plane
waves, the vibrational modes are to be a product
of the plane wave and a sine wave. The normal
mode with wave vector q is Fy(X),

FyX)=e"ur* 49 gin(g,z2) . (1)

The origin of the coordinate system is at the bot-
tom of the body and the wave vectors are given
by the usual integral multiples of 27/L for x and y
and odd multiples of /2L for z. The odd multi-
ples of m/2 L in the vertical direction are neces-
sary to satisfy boundary conditions of a free up-
per surface and a fixed lower surface,

Quyy=2myy/Lyy, Myy,=0,1,22, ...
q.=(2 +1)m/2L,, 1=0,1,2,... .

The lattice Hamiltonian is written in terms of pho-
nons:

th=§ ﬁwqh(azhaq).—}__lé) . (3)
Q.

@)

a,, destroys a phonon of wave vector q and polari-
zation A, The operators a, a' obey the usual boson
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commutation rules.
In terms of a,, and a !, the displacement operator
for the ions is given by the usual expression

- - ﬁ 1/2 ->
102 en( ) ara b FCH . @
q q

~

€, is a polarization unit vector, M is the ionic
mass, and N is the number of ions.

If the ¢th ion is at height z;, the gravitational
Hamiltonian is the sum of the gravitational energy
of each ion Mgz,:

Hsrav:Engzi:Zbng[zll)"‘ﬁ(zl)'g] . (5)

The sum over equilibrium sites is a constant equal
to 3 NML,. The sum over lattice sites using ex-
pression (4) for U yields an expression for Hg.,, in
second-quantized form. The absence of any x or
y dependence in (5) implies that ¢,=¢,=0 only:
(MNR)Y2 s~ 15 1
Hyray=8 L, G'Zg; wa 2 ‘Z (aqzl"'azzl) . (6)
The subscript ! refers to longitudinal phonons.
Equations (3) and (6) can be combined, and a
transformation made to new boson operators:

Hyp+ Hypgy =E "’qux(AIqux+%)+ Eg +’§'NML1 ’ (7)
ax

- g (MN\Ve = 451
Aah_aah'*' quﬂﬁayoéuL_'(T > We,1 Z’ (8)
E,=-16MNL%g?/c?7*, (9)

where c, is the longitudinal sound velocity. These
new boson operators [Eq. (8)] correspond to al-
lowing the ions to come to their new gravitationally
compressed equilibrium positions.

The Hamiltonian of the electrons is also written
in second-quantized form

H,=2 €t ¢, ,
ks S s

(10)
7 %2 2aM
€,= o 1=-z-l—i, M;=0,+1,... .

The c’s satisfy the fermion anticommutation rules.
II. ELECTRON-PHONON INTERACTION

The interaction of the electrons and phonons is
assumed to arise from the polarization of the
electron gas caused by the ionic vibrations. The
coupling between the electron density and polariza-
tion is assumed to be screened and is of short
range.®

Hyon= [ drd®' (-e)plr) v’

-

®(TK(r-r"),
(11)

p(r) = (1/0) SeppeE ¥ is the electron density, p,
=YprChepCyr P(T)=L(-e)NZU(Y')/v is theelec-
tron polarization, { is an empirical constant, Z
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is the ionic valence, K(7»-7')=(1/k?)6(T -1 ")

is the short-range coupling,‘ and k. isthe screening
wave vector. Using (4) for U(T ‘) and performing
the double integrals in (11) gives H,.,y, in the
desired form

iNZePt 1 14 12
Heypn= “20L, kzz ks »=ay OF »""v<MNw ) Pr

x(aax"'arq,‘)%u. [aal*‘gﬁqc] ’ (12)

qi=%q,+Vqy ,

1 =gk a)l, 1 —eilkz=e)L
a= =5 -, (13)
B+q2 2z ‘Iz

1 _ei(kz-l-qz)l'p‘ 1 —e“kﬂ-qz)Lz

kz_qz

A= ki+q. ’ (14)

k,=2tM'/L,M=0, 1, £2,...; an electron wave
vector ¢q,=(21+1)w/2L,, 1=0,1,2,...; an ionic
wave vector.

The empirical constant ¢ defined in (11) is
evaluated by calculating the lattice resistivity of
the material with this form for the electron-pho-
non interaction. &/ kﬁ enters in both the resistivity

1

and the internal electric field, so the value of the
field is independent of the screening length chosen.
Using an inverse Wigner-Seitz radius implies ¢
=27 for most metals.

IV. GRAVITATIONALLY INDUCED ELECTRIC FIELD

The canonical transformation defined by (8) is
now made in expression (12). The result has two
parts. The first is an expression just like (12)
except that the a’s are replaced by A’s. This is
the interaction between the electrons and the pho-
nons of the gravitationally compressed lattice.
This term will lead to superconductivity (and all
other effects which depend on the electron-phonon
interaction) in the usual way. The second part
does not contain any phonon operators; it comes
from the nonoperator terms in (8). This term H,
is a one-body potential on the electrons,

1-e k,=qp) L
Hy=GY (2 . )
2 Ry pkz g qz(k +qz) q.g.(kz—qz)
(15)

i(e +q‘)L 1-¢

. NZe%gg
YvLEcu? ¢

G=-

The term in the square brackets in (15), a sum
over phonon wave vectors, can be done approxi-
mately, and is called D:

D—(Z: ) Z [(Zl +1)2(Zl+1+4M)

where N, is the number of crystal planes in the z direction, i.e.,

quantum numbers. This can be written

(21+172(21 +1-4M)

(-1) (-1)"
<(Zl 1?2l +1+4M) T (21+17(20 +1 -4 M) )]

2L,\s 1 1
- —£ 7
D‘( - ) Z,;{’( )[BMz 21+1 16007 <Zl+1+4M *

(st - arr-aw )
20+1+4M ~21+1-4M )|{ °

The most important term in (17) is the one which
depends on 1/M. Keeping only this term and ig-
noring the rest is equivalent to saying that those
electrons which are important are those with large
k, i.e., large energy and short range. The long-
range phonons, on the other hand, must be treated
carefully since they describe the gravitational
compression of the lattice,

Dg(%) 537 Z(2z+1)z ‘(2{;) EIM“ %2
(18)

Substitution in (15) yields an expression for H,,

(16)
N,=(N)'® M=0, +1, £2..., electron
1 >]+[L 1 1
21+1-4M 2M (21+1)2 " 16 M*
(17)
r
Hy2-LiG 2. + po, - (19)

ke #0 k

In (19) the coefficient of p_y, is the Fourier
transform of the one-body potential acting on the
electrons. It is proportional to the Fourier trans-
form of z,

F(z) = z ék oék 0, k.#0 . (20)
The one-body potential in configuration space ¢(z)
is therefore linear in z

¢(2)=(iGLY) z , (21)
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0(z)= (NZePgt/Velirt)z . (22)

For c¢,, the longitudinal sound velocity, the ex-
pression corresponding to a continuugx with
Young’s modulus Y, Poisson’s ratio and mass

density MN/v were used:
Y(1-o0)
z: . 23
= GIN/)(L +0)(d = 20) (23)
The internal electric field is given by the gradient
of ¢(2),

)

Em=—V<: QO(Z)): AL

(24)
% _ LN ZeMg (1+0)(1 ~20)
tnt = £ 2 T2 Y1-0) °

Table I has some typical val'.es of -E.m.

Since the long-range phoons are mainly re-
sponsible for describing the gravitational com-
pression of the lattice, perhaps a better value for

RIEGER 2
TABLE I. Typical values of E, ;.
Material E(V/m)
Cu 4.0x107¢
Sn 6.2x107¢
Pb 1.1x107
Al 4,0%x107¢

¢, the electron-phonon coupling constant, can be
obtained from ultrasonic attenuation data than
from resistivity data. The magnitude of the grav-

ity-induced electric field is roughly an order of
magnitude smaller than the values given in Table

I, if ultrasonic data are used.
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The linear thermal expansion of pure lithium has been measured from 0 °C to the melting

point by dilatometric and x-ray methods.

Changes in length and lattice parameter were de-

termined, respectively, by means of a Fizeau-type precision interferometer and by a high-
angle backreflection x-ray technique. The two expansion curves diverge above 65°C in a
manner indicating the predominance of vacancy-type defects. If the divergence of the two
curves is assumed to be due only to monovacancies, the results yield a formation energy
Ef,=0.34+0.04 eV and a formation entropy S{,=(0.9+0.8)k. The value of E{, accounts for 0.63

of the activation energy for self-diffusion.

This result is much smaller than the correspond-

ing ratio for Na, and, in fact, is comparable to results reported for fcc metals. The results
are discussed in terms of the possible coexistence of monovacancies with either divacancies

or interstitials.

I. INTRODUCTION

The x-ray dilatometric method employed inthis
work has previously been used to determine the

equilibrium vacancy concentration in the following
fcc metals: Ag,' AL,% Au,® Cu,* and Pb.® Although
the vacancy concentration at the melting point var-
ies between 1, 7x10* and 9. 4x 10™* (mole fraction),



